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" Abstract 2. Aerosol classification method 3. Appllcat|on to POLDER-PARASOL Retrieved Aerosol Parameters

Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types This poster uses AERONET data in two ways: (1) To illustrate how Mahalanobis classification works with a variable number of Hasekamp et al. (2011) describe - Pv——" propertles from pixels N — by the POLDER-3 polanmeter on the PARASOL spaoecraft Table 1 lists the propertles
(e,g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to parameters, and (2) To define aerosol classes (specified clusters) for use in classifying aerosols observed by the POLDER-3 retrieved by the Hasekamp algorithm. We applied our classification method to aerosol parameters retrieved by an updated version of the Hasekamp et al. (2011) algorithm,

understanding aerosol sources, transformations, effects, and feedback mechanisms; to improving accuracy of satellite retrievals; and to - polarimeter on the PARASOL spacecraft. which uses more wavelengths and includes particle non-sphericity (though in a different way than the AERONET algorithm). Our POLDER classification uses 4 parameters,

quantifying assessments of aerosol radiative impacts on climate. With ongoing improvements in satellite measurement capability, the SSA... EAE RRIl... and dSSA Polder-retrieved uncertainties are used in two wavs: to filter inout point <
_ , . , 491> 491,863 670 863 .491- ys: to filter input points (0SSA,9,<0.075, 0EAE g1 gg3 <0.6, RRIg7<0.1,
number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth at one or a few 2 1 Examples Of aerOSOI paramete r's In relathn tO aerOSOl types 0dSSAgg3 491 V(2) *0.075) and to define a modified Mahalanobis distance, D, that treats an N-dimensional data point and its N-dimensional error bar as a pseudo -cluster.
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wavelengths to a list that now includes complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at In Russell et al. (2010) we showed that correlations between aerosol ——GSFC _ . - _ . _ . .
several wavelengths; wavelength dependences of extinction, scattering, absorption, SSA, and backscatter; and several particle size and type and aerosol optical parameters, which had previously been (a) £ (b) '\\ i Fig. 4 shows results of applying our aerosol classification technique to a PARASOL data set from FQRTH-Crete, an island in the Eastern Medlterranean that can experience
shape parameters. Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. We describe noted via radiometric measurements of aerosol layers (e.g., g 0% = —eMexico City different aerosol types at different times. Fig. 5 shows the classification results Fia. 5. The classification 3— , , — ,
such a method, which uses a modified Mahalanobis distance to quantify how far a data point described by N aerosol parameters is from Bergstrom et al., 2007), and via in situ measurements of aerosol 5 2 R as a time series. Fig. 6 examines the case of April 20, 2008 (dashed vertical regnlte of Fig. 4 (colored % N > i. ]
each of several prespecified classes. The method makes explicit use of uncertainties in input parameters, treating a point and its N- volumes (e.g., Shinozuka et al., 2009), were also present in §’ e °© I line in Fig. 5) by showing the many ancillary data sets that are consistent with oints) shovgn as 2 5.vear ‘;‘f 1 o 2 ool / ® g /9 : ". o? *
dimensional uncertainty as an extended data point or pseudo-cluster E. It then uses a modified Mahalanobis distance, D.., to assign an AERONET-retrieved parameters describing full aerosol vertical £ fg 0010 ___Z‘f,f;‘ our POLDER classification result (red color indicates it is closest to Pure Dust). fime series in the 4 y - 4 ) .'a oo .}‘ (! o :."
observation to the class (cluster) C that has minimum D, from the point (equivalently, the class to which the point has maximum probability columns (as represented by the AERONET pre-Version 1 data in § 0850 8 R o Cemado. 1.05 arameters used bv the ;35 (34 ."‘ - "i » .3:"( < ,.‘.v' 1
of belonging). The method also uses Wilks’ overall lambda to indicate how well the input data lend themselves to separation into classes and Dubovik et al. (2002)). In particular, as illustrated in Fig. 2, E: <<_t> \\ e (a) Elassification al or)i,thm' | f 0.9/ @ @ =¥ i ® |
. y . . . . . . . . . — orest ssigned aerosol classes .
Wilks’ partial lambda to indicate the relative discriminatory power of each parameter. We use AERONET-retrieved parameters to define 7 . SSA spectra from three desert dust sites (red curves in Fig. 2a) % 0.800 8 ~ R 1k Ur;dgéo‘l‘or Symbol | EAL SSA g RRI S ol | |
prespecified clusters (pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass have slopes opposite to those for four urban-industrial and four < e ’g ‘;“é‘.’v’?ﬁiié- and gégz 4?|_1|’19 670 , | | | |
smoke, light biomass smoke, pure marine), and we demonstrate application of the method to a 5-year record of retrievals from the biomass burning sites (black and green curves). y TR e o e = 0.95|- Pk : extensive 852’??§b| . AOD i | ]
POLDER-3 polarimeter on the PARASOL spacecraft over the island of Crete, Greece. Results show changes of aerosol type at this location « Despite the variety of SSA spectral shapes in Fig. 2a, the Wavelength, nm Wavelength, nm % Poll, Dus is shown in the I0\;vest ov 5 14 | ogm.® c | - .
in the eastern Mediterranean Sea, which is influenced by a wide variety of aerosol sources. corresponding curves in Fig. 2b of aerosol absorption optical depth Fig. 2. (a) Spectra of AERONET-derived Single E 0.9" | frame for reference only: it 1498 % “a.) o/ Ya.g .:{:....' ol 3?: i
D 7 7 s - Fig 1 | b (AAOD) are all nearly straight lines in the log-log plot. In other words, . Scattering Albedo (SSA) from Dubovik et al. <8E’ is not used by the = i : : T i
1. e BaCkg rou nd and goal 9. 1. (a, b) | (a) they have nearly constant absorption Angstrom exponent (AAE). (2002). Black: Site/season designated by Dubovik < 0.85" | lassificati laorith $0.05 & | | .
» L Plumes of Sahara | In Russell et al. (2010) we also noted the overlap in AAE values et al. (2002) as Urban/Industrial or Mixed; Green: = classification algoritnm. 000 0grige |0 Wl f e Ll ch b de @ ea, o
In some conditions aerosol type can be identified in imagery from dust and wildfire ! for some urban-industrial and biomass-burming sites. indicating that ' ) _ ’ ' 3 Gray points have error bars 3 sl e L | ]
space by tracing the aerosol back to its source (e.g., the individual  smoke in MODIS merosol classification using AAE alone could Igad 5 mmbiauit J Analogous for Biomass Burning; Red-Brown: 5 OB e ) that exceed our input limits, : : : - :
. . . . . . S l
plumes in Fig. 1a,b). In other cases (e.g., Fig. 1¢) it is tempting to imagery. (c) Image 9 guity Desert Dust. (b)_ Corresponding Aerosol % — and hence were not = 06) 4 I o i
guess aerosol type based on aerosol location. However, this can of a large-scale Absorption Optical Depth (AAOD) spectra. 0.7 I classified. Dashed vertical & o4 \ 2|2 b3 5 . -
ifi ' : ' ildfi : . : . : . . s 118 500/" I ks April 20. 2008 < grlee Be e o % & I" * s 4
lead to errors, as exemplified by Fig. 1d, in which Alaskan wildfire  ~ haze over the We showed that using a two-dimensional plot, of AAE vs EAE, reduced the ambiguity but did not eliminate it. And we — 167 . | . . ine marks April 20, 2008, Bhees tag SO TR ST g
smoke, carried down the Mississippi Valley, along the Gulf Coast eastern US and suggested the use of other retrieved aerosol parameters in multidimensional analyses as a potential way to reduce remaining %65 0 05 1 15 2 2.5 the dust case explored in Jul05 Jan06 Julo6 Jan07 Jul07 B8 NIul08 Jan09 Jul09
and up the Atlantic seaboard, caused a haze layer off New England, western Atlantic. ambiguity. @ s Extinction Angstrom Exponent (491,863 nm) Fig. 6. ~ :
an area typically impacted by urban-industrial pollution. (d) Image of a In the work reported here we have investigated such multidimensional clustering analyses, using both AERONET and | | | | (b) el = S _i T TS
The aoal of this research has been to develop robust methods for large-scale haze : PARASOL data. The method we have found most effective is analogous to the method described by Burton et al. (2012). We 1.6 Asviecacioso) classes - | DT Sh At 1200 A0 1.4
g p i 5 - e - - e - - i r ; | UrbInd ym ' d)l
identifying aerosol type from the opto-physical information over the same area et call this method Specified Clustering and Mahalanobis Classification, and we illustrate it in Fig. 3 and subsequent figures. . I;u;epﬁt-
retrievable from an individual image pixel or group of pixels used in = as (c), whichwas = £ 1.557 BBV-Z*;rE. 1 , s
a retrieval (See, e.g., the pixe| groupings used by the PARASOL traceable back to 2 2 SpeCIfled CIUSte”ng and MahalanObls CIaSSIflcatlon C\EO, ﬁiho}ljﬁ | v | T— P
retrieval of Dubovik et al. (2011)). Alaska wildfires. 8 § Specified clustering (e.g., Moussiades and Fig. 3. (a) A 2-dimensional '@ —— — 3 1.5 | “(%04720#08 “ ‘. - "
“ i . < N AT 7000 .0
To illustrate the variety of parameters available, Table 1 lists examples of aerosol data produots produced by selected spaceborne, a|rborne }/akall, 2099) uses “a priori” information in a scatterplot of data from ¢ ! Dust._ oy oty . o 1.45F 1 7 ~— T PR
and surface-based sensors. To save space, Table 1 focuses on sensors or combinations that produce or promise more aerosol parameters reference” data set to assign points to AERONET Version 2 g 095, : 2 | S > 3km %
than the MODIS or MISR operational sets, although MODIS and MISR have supported very useful aerosol classification studies with their clusters. This a priori information can include  retrievals at sites/months  § ] o 4 ) Va - g
. - < —
extensive, well-documented, and validated data sets. | iInformation (e.g.,_ traJeotory or chemical designated by Dubovik et e s )
analyses or previous studies) beyond the al. (2002) or Cattrall etal. 2°® o |- R oo ANTODIS i 0
Table 1. Aerosol properties retrieved from various remote sensors (see acronyms in Table 1). A =wavelength. r,=volume median radius; o,=standard AOD = Aerosol optical parameters that will be available to the (2005) to be dominated by B g _ 2D Mahal. Cuml. | ’ DSt el e Geographe - . - . sxnconr ;
deviation; C,=volume concentration. r,=effective radius; v =effective variance; FMF=fine mode fraction; N=number concentration. S_,=aerosol extinction- optical depth. . . . . % | E"i"::;am — SE-Dark 1.3F dm:e P;:b' - ° 10°E _20 ; S0°E | w0E 0E
to-backscatter ratio (i.e. lidar ratio). 4STAR is designed to produce AERONET-like retrievals from airborne sun and sky measurements. A CI_aSS'f'Cat'On _metho_d in the general case. In certain aerosol types. P75 | e b _ i:; isj 532 nm Total Atenusted Backscatter, km” o' UTC: 2008-04.20 11:21:45.5 1o 2008-04-20 11:35:14.1 Version: 3.01 Nominal Daytime
Passive Sensors Active SONSOrS SS,?t— Single Fig. 3a, a 2-dimensional scatterplot of SSA,y; Abbreviated names of e 1.25 | ) | | ? 3 -
Scattierin : = = 0. ' | ' ' ' —0.5 0 05 1 1.5 2 2.5
AERONET | POLDER-3 on PARASOL | Glory APS RSP OMI HSRL-2 CALIOP ~lbedo. 9 - VS EAE 91,665, WE ave assigned AERONET Chss‘iS/SPeC't',ed clusters 1;55 O i Angstrom Exponent (401 fea o) 25 - Extinction Angstrom Exponent (491,863 nm)
Version 2 | Dubovik et al. | Hasekamp et | Mishchenko | Cairns et al. Jethva | Hostetler etal. | (e.g., Winker et al., RR| = Real Version 2 Level 2.0 ret”eve_d data points to (e.g., “DevUrb”) are "~ (b) | ' | ' | - 0.1 | | | | o
or 4STAR (2011) al. (2011) and | etal. (2007) | (1999, 2009), and (2012) 2009; Vaughan etal., = five ind clusters (symbol colors) using the aerosol type defined in Table 2. (b) As 1.6 0,081 Assigned serosol clases
Aerosol spectro- updates Knobelspiesse Torres 2009; Liu et al 2010) © ?C Ve I_ ex. designations of Dubovik et al. (2()()2) or in (a), but using the 51_55 ' L Color Symbo < B
Property meter s e;al' (2011). | @011) i i Lsgr;;tngﬁ'nn dag Cattrall et al. (2005), which specify months dimensions (parameters) € _ 0-06%‘}3‘.’5&2-
AOD 7 A, 340-1 6 A, 440-1020 | 491, 670, 1 >3 A, typic lly 9 i410-2250 388 nm 355, 532 nm 532 nm ! - during which certain aerosol types tend to RRI;,, VS EAE 4, g63 tO 2 s E 0 04_?)}?;5?;. .
1020 nm nm 863,1020 nm' | 410-865 nm | nm _ . dominate at certain sites. This i | illustrate how the relati g1 9% pure Mai o il i, > Mo ot R il
SSA 4 }\‘, 440_ 6 }\‘, 440_1020 491, 670, 23 }\‘, typIC’ly From RRI, 388 an FrOm the baS|C Omlna.? a Cer aln. SI eS.. IS IS an eXamp e I .us ra e OW e re a |Ve ‘g 1.4k %?, O 02_1)011-DUSt '-°;‘o3j'” .28 29.70 27.98 268.04 2378 20.94 7.28 2 9-_
1020 nm am 863.1020 nm | 410-865 nm' | IRL size dist. parameters in ot specified ol_usterlng. Fig. 3b, analogous to differences and overlap ¢ . 7 O | n.
RRI 4\, 440- 6 A, 440-1020 | A—indep, 491- | >3 A, typic’ly | A—indep, 410- Table 1, other Flg. 3a, substitutes RR|670 for SSA491, to between classes can o 2D Nl Cumu, Tg“ o- . f) 5
1020 nm nm 1020 nm' 410-865 nm' | 1590 nm' parameters can illustrate how the relative differences and change with different S ] 5 | _
IRI 4\, 440- 6 A\, 440-1020 x—indep,1491- k—indep,l410— be derl\]/cedﬁ i overlap between classes can change when dimensions (parameters). '%; 0 » 05 A E1 w© ‘5583 | 2 25 g —0.02) £ ) ‘
1020 nm nm 1020 nm 1590 nm some of whic . xtinction Angstrom Exponent (491,863 nm .<DE 004k § g B
Size Iy, Lo, Oy~ | Ty, Oy " I, Ve ™ Io, Ve Io, Vo can be very different parameters _are used. The names of Table 2. Aerosol classes (specified clusters) currently used in our aerosol classification method € 0.0 R g L,
parameters | FMF(A) useful for aerosol clusters (equwa_lently, Classes or types) I YeDY- 006 o ) | :
Column | C, C. N (cm )" N(mpm ) aerosol used in .Flg. 3 are desorlbed more fully In Table 2, | Class name Included sites, numbers of data points, periods _ d‘:‘:““ P’:;’- g 1 e e )
amount | (um’/um?)’ | (um’/um?)’ classification. along with the AERONET sites and periods used Solar Village, SAT 1=436). Capo Verds (n=56), Dakar =008 e L1 S0 0 ant B e
~Shape % spheres % spheres | % spheres in v Depolarization | Depolarization Examples as input when building each class. | pure Dust Duct SE (n=1 43‘;’, Tamanrasset fNMp AL (n=27), ’ ’ 0.4 Cl) o ; o : o —r=£ % e e T e TR I e e e e e
indicator coarse mode (355, 532, (532 nm) include: Mahalanobis classification (Mahalanobis, 1936; s Banizoumbou, NI (n=321), IER_Cinzana, MA (n=186); ' Extinction Angstrom Exponent (491,863 nm) | (% [ ( A (e + 0.0 e otsiote 1= cemmmaine 2= 6ot 3= pohaedcontontl = cn contrent 5« ot o snole
1064 nm) EAE: Extinction  Wikipedia, 2010; Burton et al., 2012) assigns an Total n=1169, Mar-Jul 1952-2008* - i ' '
Laver Ve v v rIKIpedia, K . K ) J y PolDust Beiiine. CN (n=1563). Cairo. EG (n=34). Bahrain. BH Fig. 4. Results of applying our 4-parameter (SSA 4, EAE 444 gg3, RRlg7y, Fig. 6 AnC|IIary results re the Apr 20, 2008 aerosol over FORTH-Crete, for which our
y angstrom L T ) eyjing, CN ( ), Cairo, EG (n=34), Bahrain, e o :
- g given N-dimensional point (x;,x5,...,xy)" to the Polluted Dust dSSA ) aerosol classification technique to the updated Hasekam
height / Exponent. luster that has minimum Maha anobis distance PolD (n=121); Total n=1718* 863,491 : q P P || algorithm classifies POLDER results as Dust. a) MODIS image for April 20, 2008, 11:20
BaCkSI?agef 335,532, 1064 1 532, 1064 nm AAOD: Aerosol [ g ot boint. In 2 dimensions, curves of | Biomass Buming,  [BB-Dark %&nzgu, 2211\34)(11:1513), Senanga, ZM (n=164), Zambezi, erl'al. (20'1d1) rte_:rle;‘/als from P_?_RSSIOLtat F?RTH-CIrere. Col;);s of b UTC showing dust flowing from Libya, with HYSPLIT back trajectories from FORTH-Crete
coef. nm - M : ) | ’ N n= ellipses identify the prespecified clusters (aerosol classes) from Table : : ‘99.11- oty
Extinction 355,332 nm. | 532, 1064 nmy ibﬁgﬁtéﬁn th - constant Dy, are ellipses, several of which are Dark Smoke B Total n=1890, All Aug-Nov 1995-2008% 2; symbol shapes and colors of the FORTH-Crete data points identify ,itgpaltltucl:nsc,)an?g C?I__IOPdtroacc;IBfor ﬁpg:zzc;)é 2&?8, $ .22'1 1:35 UTde b)tl:;OOL[?ERIret”ri'ved
coef. E P _ pth. shown in Fig. 3. When points in a class are multi- Biomass Burning, BB-White, | Alta Floresta, BR (n=501), Los Fieros, BO (n=137). the aerosol class to which thev are assianed. Error bars show retrieval 865° c) ) -re_ reve 7950 ) ) -wNhem predictions of dus 550- INSErL.
S 355,532 nm AAE: Absorption 2 ; - White Smoke BB-W Total =638, All Aug-Oct 1995-2008* _ they gned. _ GEOS-Chem extinction coefficient profile (550 nm, km-') above FORTH-Crete. e) CALIOP-
— | | | | ’ | angstrom AluE7 CLE eVl D)y e So & @I IELE -336). 1. uncertainty for representative PARASOL-retrieved points. retrieved total attenuated backscatter at 532 nm. f) CALIOP-assigned aerosol type
' For each of 2 size modes (fine and coarse). ' 5Plus values at 354 and 500 nm from model. exponent distribution; hence, the probability P(D,,) of a . GSFC, MD, US (n=836); GISS, NY, US (n=31); : :
2 _hi : Qi trib B\ /arti~al i g - p ' ’ ’ A M Urban-Industrial, UrbInd, Creteil, FR (n=29); Aire Adour, FR (n=9); Lille, FR
From 22-bin retrieved volume-size distribution. Vertical integral of extinction profile. random point from the distribution being closer develoned Uthl ~136
3From <16-bin retrieved volume-size distribution. "From attenuated backscatter using “assumed” S, from aerosol layer than D. 1o the clust h g | Geveioped economy (LT %o_tal nl'1061 All Jun-Sep 1992-2009)* Summary and Conclusions
“For optimizations that utilize data from the HSRL, the aerosol layer identification. | an. WO UNle ol mea_n SIS ) : ’ P . T . . . . . .
height is fixed by HSRL observations and not changed during optimization. ~ 8For coarse mode obtained from standard chi-square tables. The Urban-Industrial, ~ [DevUrb, Anmyon, SK (n=77), Bandung, ID (n=76), Chen-Kung, 'Our method, Mahalanobls classification using presp_emfled.clusters (classee), defines the pre-spemfred clueters (Table 2) using parameters retrle\./ed.from AERONET
- developing economy [DevU CN (n=354);Total n=507, All 2000-2012* stations where a single aerosol type tends to dominate in certain months. To “purify” each class, points are filtered in both parameter values and Mahalanobis distance.
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- of using 2 rather than 1 dimension (parameter)

for aerosol classification (e.g., EAE 4, g¢5 helps
separate classes that overlap in SSA,q,).
Fig. 3 also demonstrates how using different

TCountry abbreviations: AL=Algeria. BR=Brazil. BH=Bahrain. BO=Bolivia. CN=China.

EG=Egypt. FR=France. ID=

Indonesia. MA=Mali. NI=Niger. SA=Saudi Arabia. SE=Senegal.

SK=South Korea. US=United States. ZM=Zambia.
To “purify” each class, points are filtered in both parameter values and Mahalanobis distance.

dimensions (parameters) can change the separation between classes (clusters). For example, replacing SSA,q, by RRIlg4 In

. going from Fig. 3a to Fig. 3b increases the separation of BB-White from Urblnd (the corresponding 75% ellipses overlap in Fig.

3a but not in Fig. 3b), but it reduces the separation between BB-White and BB-Dark (the corresponding 75% ellipses are
tangent in Fig. 3a but greatly overlapping in Fig. 3b). Use of a 3-dimensional Mahalanobis distance can benefit from the
information in all parameters. And the Mahalanobis formulation has the flexibility to accommodate still more dimensions.

*We used a modified Mahalanobis distance, D, that takes explicit account of the N-dimensional uncertainty on N-dimensional input points retrieved from POLDER.
*Applying the classification algorithm to a 5-year series of parameters retrieved from POLDER measurements at Crete yielded classifications into six of our seven
prespecified clusters (Figs. 4 and 5), with only Biomass Burning—Dark Smoke receiving no data points.

*The April 20, 2008 retrieval at Crete, classified as closest to Pure Dust, is consistent with a variety of ancillary measurements and analyses, including MODIS RGB
imagery, HYSPLIT trajectories, POLDER and MODIS AOD maps, CALIOP-retrieved vertical cross sections, CALIOP-assigned aerosol type, and GEOS-Chem modeling (Fig. 6).

Outlook

*The classification method could be applied to POLDER-retrieved data sets more global in scope and extensive in time, when they become available in the future.

*And also to other parameters and sensors (e.g., Table 1) because of the flexible applicability of the Mahalanobis and modified Mahalanobis distance measures used here.
»Comparisons to coincident results from other methods (e.g., more extensive modeling; in situ measurements; and classifications using HSRL- or 4STAR-retrieved parameters)
can help to reveal the relative strengths of each method.



